Instructional Framework # ARIZONACTE #### **Automation and Robotics** 48.0500.20 This Instructional Framework identifies, explains, and expands the content of the standards/measurement criteria, and, as well, guides the development of multiple-choice items for the Technical Skills Assessment. This document corresponds with the Technical Standards endorsed on January 27, 2021. | Domain 1: Mechanical Properties Instructional Time: 40 - 50% | | |---|--| | STANDARD 2.0 PERFORM ELECTRICAL AND ELECTRONIC TASKS | | | 2.1 Measure and determine voltage, current, resistance, and power in AC and DC circuits (i.e., oscilloscope, volt/ohm, meter, etc.) | OscilloscopeOhm's LawDigital multimeter | | 2.2 Troubleshoot voltage, current, and power in AC and DC circuits (i.e., fuse, continuity, etc.) | FuseContinuityCircuit breaker | | 2.3 Identify and troubleshoot components and connections | Components Connections Series Parallel | | 2.4 Read electrical drawings (i.e., simple starter circuits, PLC output, etc.) | Simple starter circuits PLC output Electrical symbols | | 2.5 Explain the role of electronic devices in automation and robotics (i.e., common problems, common scenarios, etc.) | Common problemsCommon scenarios | | STANDARD 3.0 ANALYZE HYDRAULIC AND PNEUMATIC SYSTEMS | | | 3.1 Describe the relevance of material properties to robotics (e.g., inertia, velocity, mass, density, and strength) | Inertia Velocity Mass Density Strength Hydraulic or pneumatic | | 3.2 Examine the performance of hydraulic circuits | Hydraulic circuits Pressure | |--|--| | 3.3 Examine the performance of pneumatic circuits | Pneumatic circuitsPressure | | 3.4 Troubleshoot hydraulic and pneumatic circuits (i.e., flow controls, valve functionality, pressure sensors, etc.) | Flow controls Valve functionality Pressure sensors Hoses Airline Safety release valve Pneumatics diagrams hydraulics Schematics | | 3.5 Describe the fundamentals of vacuum technology | Vacuum technology | | STANDARD 5.0 DESCRIBE THE OPERATION AND USE OF VARIOUS | S FORMS OR ELECTRICAL MOTORS | | 5.1 Explain the "safety by design" concept to ensure operator and workspace safety | "Safety by Design" Hazards Identify Pinch point Reduce/eliminate Prevention through Design | | 5.2 Explain the operation and use of DC motors in automation controls | DC motors | | 5.3 Explain the operation and use of stepper motors in automation scenarios | Stepper motors | | 5.4 Explain the operation and primary use of AC motors in automation assemblies | AC motors Pumps Blowers Conveyors Industrial machinery | | 5.5 Explain the operation, use, and advantages of brushless motors in automation and robotics | Brushless AC/DC motors Transfer current Electronic mechanisms | | | Actuation applicationsEfficiency | |--|--| | 5.6 Describe how servos are used in automation and robotics (e.g., robot arms, legs, and steering) | Robot Arms Legs Steering Servo motor Degrees of Freedom | | STANDARD 6.0 PERFORM MECHANICAL SYSTEMS LINKAGES TAS | KS | | 6.1 Explain gear reduction and install a belt or chain drive | Gear reduction Belt installation Chain drive installation Adding gears/sprocket Changing gear size Compound gears Gear box | | 6.2 Explain gear ratio and install a gear train | Gear ratio Changing gear size Compound gears Torque Speed Drive ratio | | 6.3 Compute mechanical advantage of a belt or chain drive | Belt mechanical advantageChain drive mechanical advantage | | 6.4 Compute mechanical advantage of a gear train | Gear train mechanical advantage Speed Force Gear ratios | # Domain 2: Automation and Programming Instructional Time: 25 - 30% | STANDARD 4.0 ANALYZE PROGRAMMABLE LOGIC CONTROLLER (PLC) SYSTEMS | | |--|---| | 4.1 Explain PLC functionality (i.e., relate schematics to PLC inputs/outputs, program flow, etc.) | Relate schematics to PLC inputs/outputs Program flow | | 4.2 Interpret ladder logic and other commonly used industrial languages | Ladder logicLadder logic symbols | | 4.3 Develop a flowchart that identifies and solves the automation problem | Automation problem Problem solving | | 4.4 Upload/download a logic program into a PLC | Logic programUploadDownload | | 4.5 Troubleshoot input/output modules (AC and DC) | AC/DC | | STANDARD 10.0 APPLY SENSOR SOLUTIONS | | | 10.1 Select sensors for use in a feedback control loop | SensorsFeedback control loop | | 10.2 Construct and operate a system with a feedback control loop | Feedback control loop system | | 10.3 Calibrate sensors | Calibrating sensors | | 10.4 Gather and statistically analyze performance data on a control loop | Control loop performance analyzation | | 10.5 Explain analog to digital and digital to analog converters | Analog to digital and digital to analog converters | | STANDARD 13.0 DEMONSTRATE SAFE AND PROPER USE OF ELECTRONIC AND OTHER LABORATORY EQUIPMENT, TOOLS, AND MATERIALS | | | 13.1 Explain and apply proper ground requirements | Proper ground requirementsOSHA 10 | | 13.2 Specify safety conditions when working with automation and robotics (e.g., arc flash, high voltage, pneumatics, hydraulics, and stored energy) | Arc flash High voltage Pneumatics Hydraulics Stored energy | |---|---| | 13.3 Identify and properly use common electrical and electronics hand tools | Common electrical and electronics hand tools Proper tool use Use the right tool for the right job | | 13.4 Follow laboratory safety rules and procedures | Laboratory safety rules and procedures | | 13.5 Describe the concept of "fail safe" and how such components are integrated into robotic systems | ● "Fail safe" | | 13.6 Explain modern safety hardware and circuits (i.e., light curtains, safety fences, safety relays, etc.) | Light curtainsSafety fencesSafety relays | | Domain 3: Industrial Applications Instructional Time: 25 - 30% | | |---|--| | STANDARD 7.0 PERFORM DRAFTING TASKS | | | 7.1 Make freehand sketches (e.g., line weights, hidden lines, center lines, and dimensioning) | Line weights Hidden lines Center lines Dimensioning Views Top Side Front Isometric | | 7.2 Make CAD representations from freehand sketches | CAD vs. FreehandParts to assemblies | | 7.3 Determine shapes and sizes of surfaces from alternative views (e.g., orthographic, projection view, first angle projection, and third angle projection) | Orthographic Projection view First angle projection Third angle projection | |---|--| | 7.4 Make CAD drawings using geometric construction techniques | CAD drawings | | 7.5 Make dimensional CAD drawings (e.g., 2D and 3D) | 2D Sketch 3D Sketch | | 7.6 Explain basic knowledge of geometric dimensioning and tolerancing | Geometric dimensioning and tolerancing | | 7.7 Interpret electrical drawings and architectural plans | Electrical drawings Architectural plans | | STANDARD 8.0 IDENTIFY INDUSTRIAL ROBOT TYPES AND THE TA | SKS THEY PERFORM | | 8.1 Identify robot types and degrees of freedom (i.e., SCARA, articulated, cartesian, delta, etc.) | SCARA Articulated Cartesian Delta Degrees of freedom | | 8.2 Measure robotic performance against specified criteria | Robotic performance | | 8.3 Interface a robot to real or simulated external equipment | Real or simulated external equipment | | 8.4 Simulate a solution | Simulate a solution Run through Fluid simulation Software simulation Prototype | | STANDARD 9.0 EXAMINE DATA COMMUNICATION METHODOLOGIES | | | 9.1 Select data communication protocols and associated connectors | Data communication protocolsAssociated connectors | | 9.2 Identify tradeoffs among wired and wireless data communication protocols | Wired data communication protocolsWireless data communication protocols | | 9.3 Explain IOT (Internet of Things) and IIOT (Industrial Internet of Things) | IOT (Internet of Things)IIOT (Industrial Internet of Things) | |---|---| | STANDARD 11.0 DESCRIBE COMMON MANUFACTURING PROCESS | SES IN AUTOMATION | | 11.1 Describe machining processes (i.e., traditional machining, CNC, etc.) | Traditional machining Milling Lathing Drilling CNC CAM G-code | | 11.2 Describe basic material properties used in manufacturing processes (i.e., aluminum, steel, titanium, etc.) | AluminumSteelTitanium | | 11.3 Explain the impact of 3D printing on rapid prototyping | 3D printing on rapid prototyping | | 11.4 Explain additive manufacturing versus subtractive manufacturing | Additive manufacturingSubtractive manufacturing | | 11.5 Describe basic fabrication principles (i.e., laser, sheet metal, welding, cutting, etc.) | Fabrication processes Laser Sheet metal Welding Cutting Plastic injectors 3D printing | | 11.6 Describe material handling [i.e., conveyors, bowl feeders, AGV (Automated Guided Vehicle), etc.] | Conveyors Bowl feeders Automated Guided Vehicle (AVG) | ## Domain 4: Innovation Instructional Time: 5 - 10% | STANDARD 1.0 EXAMINE THE IMPACT OF NEW TECHNOLOGIES ON AUTOMATION AND ROBOTICS | | |--|---| | 1.1 Describe the principles, processes, and practices of AI (artificial intelligence), ML (machine learning), and RPA (robotic process automation) | Artificial intelligence Machine learning Robotics process automation | | 1.2 Discuss how the application of AI, MI, and RPA have changed existing business (i.e., enhanced efficiency, increased work performance, reduced human error, simplified interactions, speedier processes, improved customer experience, etc.) | Enhanced efficiency Increased work performance Reduced human error Simplified interactions Speedier processes Improved customer experience | | 1.3 Give examples of how AI, ML, and RPA are used in services, manufacturing, and healthcare [i.e., social media, virtual/personal assistant (Alexa and Siri), financial fraud detection, self-driving cars, medical diagnosis and prediction. etc.] | Social media Virtual/personal assistant (Alexa and Siri) Financial fraud detection Self-driving cars Medical diagnosis and prediction | | 1.4 Relate the Three Laws of Robotics (Asimov's Laws) to future technology applications | Asimov's Laws | | 1.5 Discuss ethical challenges associated with AI, ML, and RPA (i.e., privacy, data inaccuracies, future loss of jobs, how machines affect human behavior and interaction, etc.) | Privacy Data inaccuracies Future loss of jobs How machines affect human behavior and interaction | | STANDARD 12.0 DEVELOP ROBOTICS APPLICATION SYSTEMS | | | 12.1 Describe robotics operating systems [i.e., ROS (robot operation system), Linux, etc.] | Robot operation system (ROS)Linux | | 12.2 Identify a problem and develop a flowchart for software development (i.e., Boolean logic, ladder, etc.) | Boolean logic Ladder logic | | 12.3 Identify peripheral hardware required to complete the task (i.e., vision systems, 3D scanners, end-of-arm tools, force sensing, etc.) | Vision systems3D scanners | | | End-of-arm toolsForce sensing | |--|--| | 12.4 Develop or reuse software components (i.e., modular software design, etc.) | Modular software design | | 12.5 Use software tools to develop a robotics application | Software toolsBlock codeG-codeSlicer | | 12.6 Use a simulation to develop and validate a design for a robotics problem | SimulationPrototype | | 12.7 Use a test-driven development approach | Test-driven development approach | | 12.8 Demonstrate a methodical approach to process development | Process development | | 12.9 Describe integration technologies (i.e., CNC, AI, RPA, ML, etc.) | CNCAIRPAML | | 12.10 Describe robotics project constraints (i.e., timeline, budget, environment, skill level, etc.) | Timeline Budget Environment Skill level Engineering notebook |